The hepatic peptide hormone hepcidin is the central regulator of iron metabolism and mediator of anemia of inflammation. To date, only one specific immuno-dot assay to measure hepcidin in urine had been documented. Here we report an alternative approach for quantification of hepcidin in urine by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Peptide peaks were detected corresponding to the 3 forms of hepcidin normally found in urine. The identity of the peak equivalent to hepcidin-25 was confirmed using synthetic human hepcidin-25. Validation of our MS data on samples with various hepcidin levels showed a strong correlation with previous immuno-dot assay results (Spearman R = 0.9275, P < .001). Most importantly, this hepcidin assay clearly discriminates between relevant clinical iron disorders. In conclusion, this novel MS urine hepcidin assay is easy to perform and available to a wide audience. This enables the implementation of hepcidin measurements in large clinical studies. (Blood. 2005;106:3268-3270)
To investigate the feasibility of a mass spectrometry–based assay for the quantification of urine hepcidin, a pilot SELDI-TOF-MS was conducted where the spectra of a patient with septicemia and a healthy volunteer were generated. Figure 1Ai-ii shows in both spectra a clear peak at 2788 m/z that corresponds with the peak mass of 2789 m/z from the synthetic human hepcidin-25 peptide (Figure 1Aiii). Besides hepcidin-25, the urine spectra also show peaks that correspond with reported masses of the N-terminally truncated hepcidin-20 and -22 (respectively 2192 m/z and 2436 m/z, as measured by MALDI-TOF-MS).2 As expected, the intensities of the hepcidin peaks are strongly increased (about 3-fold) in the case of septicemia (Figure 1Ai-ii). The results indicated hepcidin was detectable and quantifiable in urine samples by SELDI-TOF-MS. As the lack of commercially available peptides hampers the mass confirmation of the 20– and 22–amino-acid hepcidin forms, measurements will be based on the hepcidin-25 peptide until new insights on the 20– and 22–amino-acid peptides will approve a change in the data analysis protocol.

Validation of SELDI-TOF-MS measurements

To validate SELDI-TOF-MS measurements, we performed SELDI-TOF-MS on urine samples from our previous study,14 in which...
hepcidin concentration was determined by the immuno-dot assay. The samples were from 10 volunteers injected with lipopolysaccharide (LPS) from whom we collected urine at 4 time points within a 22-hour time frame.\(^1\) Statistic analysis showed a strong significant correlation between the 2 methods (Spearman \(R = 0.9275, P < .001\)) and no significant differences between methods for each volunteer at each time point (Paired \(t\) test \(P > .05\)). These results prove that the SELDI-TOF-MS approach for urinary hepcidin measurements is comparable to the published immunoassay method. In addition to providing accurate results, the assay is fast, simple, and high-throughput, and therefore suitable for large experimental clinical studies.

Implementation in clinical practice

To investigate whether hepcidin quantification by mass spectrometry can distinguish between different clinical iron metabolism disorders, urine from patients with several iron-related diseases were used for SELDI-TOF-MS measurements. Figure 1B shows that patients suffering from septicemia as well as those injected with LPS had significant elevated urinary hepcidin excretion compared with healthy subjects (Mann-Whitney \(U\) test, \(P < .05\)). Patients with iron deficiency anemia and (partly) compensated hereditary hemochromatosis showed significant reduced hepcidin excretion compared with healthy subjects (\(P < .05\)). Patients with MDS with transfusion-induced iron overload, serum transferrin saturation values higher than 77\%, and ferritin levels over 500 \(\mu\)g/L showed relatively increased but greatly varying hepcidin levels. This variety precludes differentiation of patients with secondary iron overload from healthy individuals (\(P = .054\)), while median difference with acute infection patients is still significant (\(P < .05\)). These results are consistent with previous reports on hepcidin levels in physiologic and pathophysiologic states.\(^10\),\(^15\)-\(^17\) In addition, the SELDI-TOF-MS method would be suitable for differentiation between (hepcidin-induced) anemia of inflammation, and iron deficiency anemia where hepcidin excretion is physiologically reduced.

In conclusion, we present a novel mass spectrometry–based assay for the high-throughput measurement of hepcidin levels in urine. We anticipate that this will become an important tool to increase our insight in the role of hepcidin in iron metabolism-related disorders.

Acknowledgments

We would like to thank Rian Roelofs for her preliminary work on the hepcidin assay, and Waander van Heerde and Arnold Loof for their technical support on the PBS IIc. We would also like to thank Reinier Raymakers, Esther Jacobs, Mirian Janssen, Peter Pickkers, and Lammy Elving for their efforts in patient selection and sample collection, and Jo Marx for discussion.

References